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1. INTRODUCTION 

The theory of operator algebras was initiated in a series of papers by Murray and von Neumann in 

thirties. Later such algebras were called von Neumann algebras or W*-algebras. These algebras are 

self-adjoint unital subalgebras M of the algebra B(H) of bounded linear operators on a complex Hilbert 

space H, which is closed in the weak operator topology. Equivalently M is a von Neumann algebra in 

B(H) if it is equal to the commutant of its commutant (von Neumann’s bicommutant theorem). A 

factor (or W*-factor) is a von Neumann algebra with trivial center and investigation of general W*-

algebras can be reduced to the case of W*-factors, which are classified into types I, II and III. 

Real operator algebra is a *-algebra consisting of bounded (real) linear operators on a real Hilbert 

space H. If it is closed in the weak operator topology we have real W*-algebra, and if it is uniformly 

closed (i.e. in the norm topology) then we come to the notion of the real C*-algebra.  

In his monograph [7] Li Bing-Ren has set up the fundamentals of real operator algebras and gave a 

systematic discussion of the real counterpart for the theory of W*- and C*-algebras.  

A slightly different (but almost the same up to *-isomorphism) definition of real W*-algebras was 

given by E.Størmer [13,14]: A real von Neumann algebra (or real W*-algebra) is a real *-algebra   

of bounded linear operators on a complex Hilbert space containing the identity operator 1, which is 

closed in the weak operator topology and satisfies the condition  0 .i  The smalles 

(complex) von Neumann algebra ( )U   containing   coincides with its complexification i  , 

i.e. ( )U i   . Moreover   generates a natural involutive (i.e. of order 2) *-antiautomorphism 


 of ( )U  , namely ( ) * *x iy x iy     , where ( ), , .x iy U x y     It is clear that 

 ( ) : ( ) *x U x x    . Conversely, given a (complex) von Neumann algebra U and any 

involutive *-antiautomorphism α on U, the set  : ( ) *x U x x   is a real von Neumann algebra in 

the above sense.  



       Procedia of Theoretical and Applied Sciences 
International Symposium of Life Safety and Security 

ISSN: 2795-5621 Available: http://procedia.online/index.php/applied/index 
 

 
55 

 

It is not diffucul to see that two real von Neumann algebras generating the same (complex) von 

Neumann algebra are isomorphic if and only if the corresponding involutive *-antiautomorphisms are 

conjugate. Thus the study of the above real von Neumann algebra can be reduced to the study of pairs 

(U, α), where U is a (complex) von Neumann algebra and α - its involutive *-antiautomorphism. 

2. PRELIMINARIES 

Let H be a complex Hilbert space, ( )B H  denote the algebra of all bounded linear operators on H. The 

weak (operator) topology on ( )B H  is the locally convex topology, generated by semi norms of the 

form: ( ) ( , ) , , , ( ).a a H a B H        W*-algebra is a weakly closed complex *-algebra of 

operators on a Hilbert space H containing the identity operator 1. Recall that W∗-algebras are also 

called von Neumann algebras.  

Let further M be a W*-algebra. The set M   of all elements from ( )B H  commuting with each element 

from M is called the commutant of the algebra M. The center ( )Z M  of a W*-algebra M is the set of 

elements of M, commuting with each element from M. It is easy to see that ( )Z M M M   . 

Elements of ( )Z M  are called central elements. A W*-algebra M is called factor, if ( )Z M  consists 

of the complex multiples of 1, i.e if  ( ) 1, .Z M     We say that a W*-algebra M is injective if 

thereexists a projection P in ( )B H  onto M such that 1P   and (1)P 1. This isequivalent to the 

condition that M is hyperfinite, i.e., that there exists an increasing sequence  nM  of matrix 

subalgebras of the algebra M containing 1 and such that the union 
n nM  is weakly dense in M.  

Let , ,e f h  be projections from M. We say that e  is equivalent to f , and write e f , if 

* , *e f     for some partial isometry   from M. A projection e  is called: finite, if 

e f e  implies f e ; infinite - otherwise; purely infinite, if e  doesn’t have any nonzero finite 

subprojection; abelian, if the algebra eMe  is an abelian W∗-algebra. A W∗-algebra M is called finite, 

infinite, purely infinite, if 1 is a finite, infinite, purely infinite respectively; M is σ-finite, if any family 

of pairwise orthogonal projections from M is at most countable; semifinite, if each projection in M 

contains a nonzero finite subprojection; properly infinite, if every nonzero projection from ( )Z M  is 

infinite; discrete, or of type I, if it contains a faithful abelian projection (i.e. an abelian projection with 

the central support 1); continuous, if there is no abelian projection in M except zero; M is of type II, if 

M is semifinite and continuous; type 
finI  (respectively I ), if M is of type I and finite (respectively 

properly infinite); type 1II  (respectively type II ), if M is of type II and finite (respectively properly 

infinite); type III, if M is purely infinite. It is known that (see for example [103]) any W*-algebra has a 

unique decomposition along its center into the direct sum of W*-algebras of the 1, , ,finI I II II   and 

III types. 

A linear mapping :M M   is called a *-automorphism (respectively a *-antiautomorphism) if 

( *) ( )*x x   and ( ) ( ) ( )xy x y    (respectively ( ) ( ) ( )xy y x   , for all ,x y M . A 

mapping α is called involutive if 
2 id  . A *-automorphism α is called inner if there exists a unitary 

u  in M, such that ( ) *Adu x uxu , for all x M . A *-automorphism is called centrally trivial if 

( ) 0n nx x    *-strongly as n  for any central sequence  n n
x


. We shall denote by 
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( )Aut M  the group of all *-automorphisms, by ( )Aut M  the group of all *antiautomorphisms, by 

( )Int M  the group of all inner *-automorphisms, and by Ct(R) the subgroup of its centrally trivial *-

automorphisms of M. Two *-automorphisms or *-antiautomorphisms α and β are said to be conjugate 

(or outer conjugate), if 
1        (respectively 

1Adu         ) for some *-automorphism 

θ (and an inner *-automorphism Adu). A linear functional ω on M is called positive, if ( * ) 0x x   

for all x M . A positive linear functional ω on M with 1   is called a state. Let M 
 be the 

positive part of M. A weight on M is a homogeneous additive function  : 0,M     (we 

suppose that 0 0   ). A weight (or a state) ω is called: faithful, if for any , ( ) 0x M x   

implies 0x  ; normal, if for any net  x  in M, increasing to an element x, we have 

( ) sup ( )x x   ; finite, if ( )x   for all x M ; semifinite, if for any x M  there exists 

a net of elements  y M  , such that ( )y  , and y x   in σ - weak topology; ω is a 

trace, if ( *) ( )uxu x   for all x M  and each unitary u M . 

The type of a W*-algebra is tightly connect with the existence of traces on it. Namely a W*-algebra M 

is a finite if and only if it possesses a separating family of finite normal traces; it is semifinite if and 

only if it possesses a faithful semifinite normal trace; M is purely infinite if and only if there is no 

nonzero semifinite normal trace on M (see [15]). 

Definition [4]. By a real C*-algebra we mean a real Banach *-algebra R such that the relation 
2

*a a a  holds and the element 1 *a a  is invertible for any .a R  

Definition* [8,9]. A real C*-algebra R such that R+iR is a complex W*-algebra is referred to as a real 

W*-algebra.  

We proceed with another definition of a real W*-algebra, which can be found in papers of Størmer.  

Definition∗∗ [2,13]. A unital weakly closed real *-algebra R in ( )B H  such that  0R iR   is 

called a real W*-algebra. 

A real W*-algebra R is called a (real) factor if its center Z(R) consists of elements λ1, .  We say 

that a real W*-algebra R is of type 
1, , ,finI I II II 

 and III,  0,1  if the enveloping W*-algebra 

( )U R R iR   (i.e., the least W*-algebra containing R) is of the corresponding type with respect to 

the usual classification of W*-algebras. 

3. MAIN RESULTS 

Let A be a real C*-algebra, with the complexification M A iA  . Then M is a complex C*-algebra 

and, as we have seen in the previous section, if A is a real AW*-algebra M may not be a (complex) 

AW*-algebra. Now let us consider the converse problem if M A iA   is an AW*-algebra is A 

necessarily a real AW∗-algebra? The following result gives a positive answer to this problem. 

Proposition 1. Let A be a real C*-algebra and let M A iA   be its complexification. Suppose that 

M is an AW*-algebra. Then A is a real AW*-algebra. 

Proof. As we have mentioned in the first section, A coincides with the fixed point set under the 

conjugate linear *-automorphism " ": x iy x iy    of M, where ,x y A , i.e. 
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 .:A a M a a   If S is a nonempty subset in A then for its right-annihilator (with respect to M) 

we have  

 ( ) 0MR S a M sa for all s S     

and  

( ) 0, 0,Ma R S sa s S sa s a sa s S            

because .s s A   This means that ( )Ma R S  if and only if ( )Ma R S .  

Now suppose that M is an AW*-algebra, then ( )MR S gM  for a suitable projection g M . Since 

( )Mg R S  from above it follows that ( )Mg R S . Therefore g  is a projection and g gM , i.e. 

g gg . Thus 
* * * *( ) ( ) ( )g gg g g gg g gg      i.e. g g gg gg g     

This means that g A . But then  

( ) ( ) ,M MR S R S A gM A gA      

i.e. A is a real AW*-algebra.  

Proposition 2. There exist real AW*-factors which are not real W*-factors. 

Theorem 1. A real AW∗-algebra A is a real W*-algebra if and only if  

1. A possesses a separating family of normal states;  

2. its complexification M A iA   is an AW*-algebra. 

Proof. Necessity is obvious, since if A is a real W*-algebra, then M A iA   is a (complex) W*-

algebra (see [7, Chap.5]). Therefore, M is an AW*-algebra and it possesses a separating family of 

normal states, the restrictions of which on A give a separating family of normal states on A.  

Sufficiency. Let M A iA   be an AW*-algebra and let A possess a separating family of normal 

states, which we denote by  f , i.e. for any , 0, 0a A a a    exists  f f  with ( ) 0.f a    

 For , , ,x a ib M a b A     we put ( ) * *.x a ib    A straightforward calculation shows that α 

is an involutive (i.e. with period 2) *-anti-automorphism of M, and  .: ( ) *A a M a a    

The extension of f  by linearity on M we denote by 
0f , and we shall show, that the family  0f  is 

a separating family of normal states on M.  

For  : *sx a ib M x M x x       we have * , *a a b b   , and since f  is hermicitian 

we obtain 
0( ) ( ) ( ) ( ),x f a if b f af       since ( ) 0f b  . Thus, for 

sx M  we have  

0 1
( ( )),

2
( ) f x xxf

   

and ( ) ,x x A   since ( ) 2 .x x a    
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If 0x  , then ( ) 0x   (because α is a *-anti-automorphism), and hence ( ) 0,x x   i.e. 

( )x x A   . Therefore 
0 1

( ( )) 0
2

( ) f x xxf
   , i.e. all functionals 

0f  are positive on M. 

Moreover, we have 
0(1) (1) 1ff     , i.e.  0f  is a family of states on M.  

Now let us show, that each state 
0f  is normal. If  x M   is an arbitrary net with 0,x then 

since α is an order isomorphism of M, we have )( 0.x  Therefore ( ) 0x x   and 

( )x x A    . Since f  is a normal we obtain  

0 1
( ) ( ( )) 0

2
f x f x x        

i.e. all functionals 
0f  are normal on M.  

Finally, let , 0x M x   and 
0

( ) 0xf   for all γ. Then ( )x x A   , and since  f  is a 

separating family of states, ( ) 0x x  . Hence we have  ( ) ( ) 0 ,x x M M         i.e. 

0x  . Thus, the AW*-algebra M possesses a separating family of normal states  0f . By the 

theorem of Pedersen [10] M is a W∗-algebra. Therefore, by [7] A is a real W∗-algebra.  

Now, let M be a (complex) AW*-factor, α its involutive *-anti-automorphism. Then as it was 

mentioned above the set  : ( ) *A M a a     is a real C*-algebra such that M A iA   

(actually ( *)x x  in terms of operation ”-”) and from Proposition 1 it follows that A is a real AW*-

factor. It is known that two real W*-algebras generating the same (complex) W*-algebra, are 

isomorphic if and only if the corresponding involutive *-anti-automorphisms are conjugate [2,13,14]. 

A similar result is also valid for real AW*-algebras: 

Theorem 2. Let α and β be involutive *-anti-automorphisms of a (complex) AW*-factor M. Then the 

real AW*-factors  

 : ( ) *A x M x x    and  : ( ) *B x M x x    

are real *-isomorphic if and only if the involutive *-anti-automorphisms α and β are conjugate, i.e. 
1    for a suitable *-automorphism of the AW*-factor M.  

Proof. Let A and B be real *-isomorphic with a *-isomorphism 
0 : A B  . Then 0  can be 

naturally extended to a (complex) *-isomorphism θ of their complexifications A iA  and B iB  

both coincide with M. Therefore θ is a *-automorphism of M and ( )A B  , i.e. ( ) *x x   if and 

only if ( ( )) ( ( ))* *x x x     . Thus for x A  we have  

( ( )) ( ( ))* ( *) ( )x x x x        , i.e. 
1 ( )x    for all .x A   
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Since 
1 1
   

 is a *-automorphism on M which is identical on A and any real *automorphism of A 

can be uniquely extended to a complex *-automorphism of M, it follows that 
1 1

id   
  on 

whole M, i.e.    and 
1   , i.e. α and β are conjugate.  

Conversely, if α and β are conjugate, i.e. 
1

 


  for a suitable complex *-automorphism θ of M, 

then    and ( ) *x x   if and only if ( ( )) * ( )*x x x     , i.e. ( )A B  . Therefore, θ 

restricted on A gives the needed *-isomorphism between real AW*-factors A and B. 
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