

International Symposium of Life Safety and Security

ISSN: 2795-5621 Available: http://procedia.online/index.php/applied/index

ON CONSTRUCTION OF REAL AW*-FACTORS

Kh. Kh. Boltaev, S. A. To'ymurodova

Tashkent state pedagogical University named after Nizami, Tashkent, Uzbekistan

Annotation: The paper of the is to initiate the study of real AW*-algebras in the framework of the theory of real C*-algebras and W*-algebras. It happens that in some aspects real AW*-algebras behave unlike complex AW*-algebras and sometimes their properties are completely different also from corresponding properties of real W*-algebras. We prove that if the complexification A+iA of a real C*-algebra A is a (complex) AW*-algebra then A itself is a real AW*-algebra. By modifying the Takenouchi's examples of complex non-W*, AW*-factors we show that there exist real non-W*, AW*-factors.

Keywords: AW*-algebra, C*-algebra, factor, involutive *-antiautomorphism, complex Hilbert space, commutant, complexification, linear *-automorphism, conjugate, bicommutant, quaternions algebra, projection, isomorphic.

1. INTRODUCTION

The theory of operator algebras was initiated in a series of papers by Murray and von Neumann in thirties. Later such algebras were called von Neumann algebras or W*-algebras. These algebras are self-adjoint unital subalgebras M of the algebra B(H) of bounded linear operators on a complex Hilbert space H, which is closed in the weak operator topology. Equivalently M is a von Neumann algebra in B(H) if it is equal to the commutant of its commutant (von Neumann's bicommutant theorem). A factor (or W*-factor) is a von Neumann algebra with trivial center and investigation of general W*-algebras can be reduced to the case of W*-factors, which are classified into types I, II and III.

Real operator algebra is a *-algebra consisting of bounded (real) linear operators on a real Hilbert space *H*. If it is closed in the weak operator topology we have real W*-algebra, and if it is uniformly closed (i.e. in the norm topology) then we come to the notion of the real C*-algebra.

In his monograph [7] Li Bing-Ren has set up the fundamentals of real operator algebras and gave a systematic discussion of the real counterpart for the theory of W*- and C*-algebras.

A slightly different (but almost the same up to *-isomorphism) definition of real W*-algebras was given by E.Størmer [13,14]: A real von Neumann algebra (or real W*-algebra) is a real *-algebra \Re of bounded linear operators on a complex Hilbert space containing the identity operator 1, which is closed in the weak operator topology and satisfies the condition $\Re \cap i\Re = \{0\}$. The smalles (complex) von Neumann algebra $U(\Re)$ containing \Re coincides with its complexification $\Re \cap i\Re$, i.e. $U(\Re) = \Re \cap i\Re$. Moreover \Re generates a natural involutive (i.e. of order 2) *-antiautomorphism α_{\Re} of $U(\Re)$, namely $\alpha_{\Re} = (x+iy) = x^*+iy^*$, where $x+iy \in U(\Re)$, $x, y \in \Re$. It is clear that $\Re = \{x \in U(\Re) : \alpha(x) = x^*\}$. Conversely, given a (complex) von Neumann algebra U and any involutive *-antiautomorphism α on U, the set $\{x \in U : \alpha(x) = x^*\}$ is a real von Neumann algebra in the above sense.

International Symposium of Life Safety and Security

ISSN: 2795-5621 Available: http://procedia.online/index.php/applied/index

It is not diffucul to see that two real von Neumann algebras generating the same (complex) von Neumann algebra are isomorphic if and only if the corresponding involutive *-antiautomorphisms are conjugate. Thus the study of the above real von Neumann algebra can be reduced to the study of pairs (U, α) , where U is a (complex) von Neumann algebra and α - its involutive *-antiautomorphism.

2. PRELIMINARIES

Let *H* be a complex Hilbert space, B(H) denote the algebra of all bounded linear operators on *H*. The *weak (operator) topology* on B(H) is the locally convex topology, generated by semi norms of the form: $\rho(a) = |(\xi, a\eta)|, \ \xi, \eta \in H, \ a \in B(H)$. W*-algebra is a weakly closed complex *-algebra of operators on a Hilbert space *H* containing the identity operator **1**. Recall that W*-algebras are also called *von Neumann algebras*.

Let further *M* be a W*-algebra. The set *M'* of all elements from B(H) commuting with each element from *M* is called the commutant of the algebra *M*. The *center* Z(M) of a W*-algebra *M* is the set of elements of *M*, commuting with each element from *M*. It is easy to see that $Z(M) = M \cap M'$. Elements of Z(M) are called *central* elements. A W*-algebra *M* is called *factor*, if Z(M) consists of the complex multiples of **1**, i.e if $Z(M) = \{\lambda 1, \lambda \in \Box\}$. We say that a W*-algebra *M* is *injective* if there exists a projection *P* in B(H) onto *M* such that ||P|| = 1 and P(1) = 1. This is equivalent to the condition that *M* is *hyperfinite*, i.e., that there exists an increasing sequence $\{M_n\}$ of matrix subalgebras of the algebra *M* containing **1** and such that the union $\bigcup_n M_n$ is weakly dense in *M*.

Let e, f, h be projections from M. We say that e is equivalent to f, and write $e \Box f$, if $e = \omega^* \omega$, $f = \omega \omega^*$ for some partial isometry ω from M. A projection e is called: *finite*, if $e \Box f \leq e$ implies f = e; *infinite* - otherwise; *purely infinite*, if e doesn't have any nonzero finite subprojection; abelian, if the algebra eMe is an abelian W*-algebra. A W*-algebra M is called *finite*, *infinite*, *purely infinite*, if e and e and if $e = \omega^* \omega$, $f = \omega \omega^*$ if f = e; *infinite* - otherwise; *purely infinite*, if e doesn't have any nonzero finite subprojection; abelian, if the algebra eMe is an abelian W*-algebra. A W*-algebra M is called *finite*, *infinite*, *purely infinite*, if 1 is a finite, infinite, purely infinite respectively; M is σ -finite, if any family of pairwise orthogonal projections from M is at most countable; *semifinite*, if each projection in M contains a nonzero finite subprojection; *properly infinite*, if every nonzero projection from Z(M) is infinite; *discrete*, or of type I, if it contains a faithful abelian projection (i.e. an abelian projection with the central support 1); *continuous*, if there is no abelian projection in M except zero; M is of type II, if M is semifinite and continuous; type I_{fin} (respectively I_{∞}), if M is of type I and finite (respectively properly infinite); type II_1 , if M is purely infinite. It is known that (see for example [103]) any W*-algebra has a unique decomposition along its center into the direct sum of W*-algebras of the I_{fin} , I_{∞} , II_1 , II_{∞} and III types.

A linear mapping $\alpha: M \to M$ is called a *-*automorphism* (respectively a *-antiautomorphism) if $\alpha(x^*) = \alpha(x)^*$ and $\alpha(xy) = \alpha(x)\alpha(y)$ (respectively $\alpha(xy) = \alpha(y)\alpha(x)$, for all $x, y \in M$. A mapping α is called involutive if $\alpha^2 = id$. A *-automorphism α is called *inner* if there exists a unitary u in M, such that $Adu(x) = uxu^*$, for all $x \in M$. A *-automorphism is called centrally trivial if $\alpha(x_n) - x_n \to 0$ *-strongly as $n \to \infty$ for any central sequence $\{x_n\}_{n \in \mathbb{N}}$. We shall denote by

International Symposium of Life Safety and Security

ISSN: 2795-5621 Available: http://procedia.online/index.php/applied/index

Aut(M) the group of all *-automorphisms, by Aut(M) the group of all *antiautomorphisms, by Int(M) the group of all inner *-automorphisms, and by Ct(R) the subgroup of its centrally trivial *-automorphisms of M. Two *-automorphisms or *-antiautomorphisms α and β are said to be conjugate (or outer conjugate), if $\alpha = \theta \cdot \beta \cdot \theta^{-1}$ (respectively $Adu \cdot \alpha = \theta \cdot \beta \cdot \theta^{-1}$) for some *-automorphism θ (and an inner *-automorphism Adu). A linear functional ω on M is called *positive*, if $\omega(x^*x) \ge 0$ for all $x \in M$. A positive linear functional ω on M with $\|\omega\| = 1$ is called a state. Let M_+ be the positive part of M. A weight on M is a homogeneous additive function $\omega : M_+ \to [0, +\infty]$ (we suppose that $0 \cdot +\infty = 0$). A weight (or a state) ω is called: *faithful*, if for any $x \in M_+$, $\omega(x) = 0$ implies x = 0; *normal*, if for any net $\{x_{\alpha}\}$ in M, increasing to an element x, we have $\omega(x) = \sup_{\alpha} \omega(x_{\alpha})$; *finite*, if $\omega(x) < \infty$ for all $x \in M_+$; *semifinite*, if for any $x \in M_+$ there exists a net of elements $\{y_{\alpha}\} \in M_+$, such that $\omega(y_{\alpha}) < \infty$, and $y_{\alpha} \to x$ in σ - weak topology; ω is a trace, if $\omega(uxu^*) = \omega(x)$ for all $x \in M_+$ and each unitary $u \in M$.

The type of a W*-algebra is tightly connect with the existence of traces on it. Namely a W*-algebra M is a finite if and only if it possesses a separating family of finite normal traces; it is semifinite if and only if it possesses a faithful semifinite normal trace; M is purely infinite if and only if there is no nonzero semifinite normal trace on M (see [15]).

Definition [4]. By a real C*-algebra we mean a real Banach *-algebra *R* such that the relation $||a * a|| = ||a||^2$ holds and the element 1 + a * a is invertible for any $a \in R$.

Definition* [8,9]. A real C*-algebra R such that R+iR is a complex W*-algebra is referred to as a real W*-algebra.

We proceed with another definition of a real W*-algebra, which can be found in papers of Størmer.

Definition** [2,13]. A unital weakly closed real *-algebra *R* in B(H) such that $R \cap iR = \{0\}$ is called a *real W**-*algebra*.

A real W*-algebra *R* is called a (real) factor if its center Z(R) consists of elements $\lambda \mathbf{1}$, $\lambda \in \Box$. We say that a real W*-algebra *R* is of type I_{fin} , I_{∞} , II_1 , II_{∞} and III, $\lambda \in [0,1]$ if the enveloping W*-algebra W(R) = D = iD

U(R) = R + iR (i.e., the least W*-algebra containing *R*) is of the corresponding type with respect to the usual classification of W*-algebras.

3. MAIN RESULTS

Let A be a real C*-algebra, with the complexification M = A + iA. Then M is a complex C*-algebra and, as we have seen in the previous section, if A is a real AW*-algebra M may not be a (complex) AW*-algebra. Now let us consider the converse problem if M = A + iA is an AW*-algebra is A necessarily a real AW*-algebra? The following result gives a positive answer to this problem.

Proposition 1. Let A be a real C*-algebra and let M = A + iA be its complexification. Suppose that M is an AW*-algebra. Then A is a real AW*-algebra.

Proof. As we have mentioned in the first section, A coincides with the fixed point set under the conjugate linear *-automorphism "-": $x + iy \mapsto x - iy$ of M, where $x, y \in A$, i.e.

International Symposium of Life Safety and Security

ISSN: 2795-5621 Available: http://procedia.online/index.php/applied/index

 $A = \{a \in M : \overline{a} = a\}$. If S is a nonempty subset in A then for its right-annihilator (with respect to M) we have

$$R_{M}(S) = \left\{ a \in M \mid sa = 0 \text{ for all } s \in S \right\}$$

and

$$a \in R_M(S) \Leftrightarrow sa = 0, \forall s \in S \Leftrightarrow \overline{sa} = \overline{sa} = s\overline{a} = 0, \forall s \in S$$

because $\overline{s} = s \in A$. This means that $a \in R_M(S)$ if and only if $\overline{a} \in R_M(S)$.

Now suppose that *M* is an AW*-algebra, then $R_M(S) = gM$ for a suitable projection $g \in M$. Since $g \in R_M(S)$ from above it follows that $\overline{g} \in R_M(S)$. Therefore \overline{g} is a projection and $\overline{g} \in gM$, i.e. $\overline{g} = g\overline{g}$. Thus $(\overline{g})^* = (g\overline{g})^* = (\overline{g})^* g^* = \overline{g}g = \overline{g} = g\overline{g}$ i.e. $g = \overline{g} = \overline{g}\overline{g} = \overline{g}g = \overline{g}$

This means that $g \in A$. But then

$$R_M(S) = R_M(S) \cap A = gM \cap A = gA,$$

i.e. A is a real AW*-algebra.

Proposition 2. There exist real AW*-factors which are not real W*-factors.

Theorem 1. A real AW*-algebra A is a real W*-algebra if and only if

- 1. A possesses a separating family of normal states;
- 2. its complexification M = A + iA is an AW^* -algebra.

Proof. Necessity is obvious, since if A is a real W*-algebra, then M = A + iA is a (complex) W*-algebra (see [7, Chap.5]). Therefore, *M* is an AW*-algebra and it possesses a separating family of normal states, the restrictions of which on *A* give a separating family of normal states on *A*.

Sufficiency. Let M = A + iA be an AW*-algebra and let A possess a separating family of normal states, which we denote by $\{f_{\gamma}\}$, i.e. for any $a \in A$, $a \ge 0$, $a \ne 0$ exists $f \in \{f_{\gamma}\}$ with f(a) = 0.

For $x \in a + ib \in M$, $a, b \in A$, we put $\alpha(x) = a^* + ib^*$. A straightforward calculation shows that α is an involutive (i.e. with period 2) *-anti-automorphism of *M*, and $A = \{a \in M : \alpha(a) = a^*\}$.

The extension of f_{γ} by linearity on *M* we denote by f_{γ}^{0} , and we shall show, that the family $\{f_{\gamma}^{0}\}$ is a separating family of normal states on *M*.

For $x = a + ib \in M_s = \{x \in M : x^* = x\}$ we have $a^* = a, b^* = -b$, and since f_{γ} is hermicitian we obtain $f_{\gamma}^0(x) = f_{\gamma}(a) + if_{\gamma}(b) = f_{\gamma}(a)$, since $f_{\gamma}(b) = 0$. Thus, for $x \in M_s$ we have

$$f_{\gamma}^{0}(x) = \frac{1}{2} f_{\gamma}(x + \alpha(x)),$$

and $x + \alpha(x) \in A$, since $x + \alpha(x) = 2a$.

International Symposium of Life Safety and Security

ISSN: 2795-5621 Available: http://procedia.online/index.php/applied/index

If $x \ge 0$, then $\alpha(x) \ge 0$ (because α is a *-anti-automorphism), and hence $x + \alpha(x) \ge 0$, i.e. $x + \alpha(x) \in A^+$. Therefore $f_{\gamma}^0(x) = \frac{1}{2} f_{\gamma}(x + \alpha(x)) \ge 0$, i.e. all functionals f_{γ}^0 are positive on M. Moreover, we have $f_{\gamma}^0(1) = f_{\gamma}(1) = 1$, i.e. $\{f_{\gamma}^0\}$ is a family of states on M.

Now let us show, that each state f_{γ}^0 is normal. If $\{x_v\} \subset M$ is an arbitrary net with $x_v \Box 0$, then since α is an order isomorphism of M, we have $\alpha(x_v) \Box 0$. Therefore $x_v + \alpha(x_v) \Box 0$ and $x_v + \alpha(x_v) \in A^+$. Since f_{γ} is a normal we obtain

$$f_{\gamma}^{0}(x_{\nu}) = \frac{1}{2}f_{\gamma}(x_{\nu} + \alpha(x_{\nu})) \rightarrow 0$$

i.e. all functionals f_{γ}^0 are normal on *M*.

Finally, let $x \in M$, $x \ge 0$ and $f_{\gamma}^{0}(x) = 0$ for all γ . Then $x + \alpha(x) \in A^{+}$, and since $\{f_{\gamma}\}$ is a separating family of states, $x + \alpha(x) = 0$. Hence we have $x = -\alpha(x) \in M^{+} \cap (-M^{+}) = \{0\}$, i.e. x = 0. Thus, the AW*-algebra *M* possesses a separating family of normal states $\{f_{\gamma}^{0}\}$. By the theorem of Pedersen [10] *M* is a W*-algebra. Therefore, by [7] *A* is a real W*-algebra.

Now, let M be a (complex) AW*-factor, α its involutive *-anti-automorphism. Then as it was mentioned above the set $A = \{\alpha \in M : \alpha(\alpha) = a^*\}$ is a real C*-algebra such that M = A + iA (actually $\overline{x} = \alpha(x^*)$ in terms of operation "-") and from Proposition 1 it follows that A is a real AW*-factor. It is known that two real W*-algebras generating the same (complex) W*-algebra, are isomorphic if and only if the corresponding involutive *-anti-automorphisms are conjugate [2,13,14]. A similar result is also valid for real AW*-algebras:

Theorem 2. Let α and β be involutive *-anti-automorphisms of a (complex) AW*-factor M. Then the real AW*-factors

$$A = \{x \in M : \alpha(x) = x^*\} \text{ and } B = \{x \in M : \beta(x) = x^*\}$$

are real *-isomorphic if and only if the involutive *-anti-automorphisms α and β are conjugate, i.e. $\beta = \theta \alpha \theta^{-1}$ for a suitable *-automorphism of the AW*-factor M.

Proof. Let *A* and *B* be real *-isomorphic with a *-isomorphism $\theta_0 : A \mapsto B$. Then θ_0 can be naturally extended to a (complex) *-isomorphism θ of their complexifications A + iA and B + iB both coincide with *M*. Therefore θ is a *-automorphism of *M* and $\theta(A) = B$, i.e. $\alpha(x) = x^*$ if and only if $\beta(\theta(x)) = (\theta(x))^* = \theta x^*$. Thus for $x \in A$ we have

$$\beta(\theta(x)) = (\theta(x))^* = \theta(x^*) = \theta\alpha(x)$$
, i.e. $\beta = \theta\alpha\theta^{-1}\alpha(x)$ for all $x \in A$.

International Symposium of Life Safety and Security

ISSN: 2795-5621 Available: http://procedia.online/index.php/applied/index

Since $\theta^{-1}\beta^{-1}\theta\alpha$ is a *-automorphism on *M* which is identical on *A* and any real *automorphism of *A* can be uniquely extended to a complex *-automorphism of *M*, it follows that $\theta^{-1}\beta^{-1}\theta\alpha = id$ on whole *M*, i.e. $\theta\alpha = \beta\theta$ and $\beta = \theta\alpha\theta^{-1}$, i.e. α and β are conjugate.

Conversely, if α and β are conjugate, i.e. $\beta = \theta \alpha \theta^{-1}$ for a suitable complex *-automorphism θ of *M*, then $\theta \alpha = \beta \theta$ and $\alpha(x) = x^*$ if and only if $\beta(\theta(x)) = \theta x^* = (\theta x)^*$, i.e. $\theta(A) = B$. Therefore, θ restricted on *A* gives the needed *-isomorphism between real AW*-factors *A* and *B*.

REFERENCES

- 1. Ayupov Sh.A., Azamov N.A. Commutators and Lie isomorphisms of skew elements in prime operator algebras. Comm. Algebra, 1996, 24, N 4, pp.1501-1520.
- 2. Ayupov Sh.A., Rakhimov A.A., Usmanov Sh.M. Jordan, Real and Lie Structures in Operator Algebras. MAIA, Kluwer Academic Publishers. 1997. Vol.418, 235p.
- 3. Berberian S.K. Baer *-rings. Springer-Verlag, BerlinHeidelbergN.Y. 1972.
- 4. Isidro J.M., Palacios A., Rodriguez. Proc. Amer. Math. Soc., 1996, N11, Vol.124, pp. 3407-3410.
- 5. Kaplansky I. Projections in Banach algebras. Ann. Math., 1951, 53, pp.235-249.
- 6. Kaplansky I. Algebras of type I., Ann. Math. 1952, 56, pp. 460-472.
- 7. Li Bing-Ren. Real operator algebras. World Scientific Publishing Co. Pte. Ltd. 2003. 241p.
- 8. Li Bing-Ren. Introduction to Operator Algebras. World Sci.. Singapore., 1992. pp. 237-256.
- 9. Li Minli, Li Li Bing-Ren. Acta Math. Sinica (N.S.), 1998. N1, Vol.14, pp. 85-90.
- 10. Pedersen G. Operator algebras with weakly closed abelian subalgebras. Bull. London Math. Soc. 1972, 4, pp. 171-175.
- 11. PutnamC.R.OnnormaloperatorsinHilbertspaces.Amer.J.Math.1951,Vol.73, pp. 357-362.
- 12. Sakai S. Operator Algebras in Dynamical Systems. Encyclopedia of Mathematics and its Applications, 1991, Vol. 41, Cambridge University Press, Cambridge.
- 13. Størmer E. On anti-automorphisms of von Neumann algebras. Pacific J. Math., 1967, N2, Vol.21, pp 349-370.
- 14. Størmer E. Real structure in the hyperfinite factor. Duke Math. J., 1980. Vol. 47. N 1. pp. 145-153.
- 15. Takesaki M. Theory of Operator Algebras. I, Springer-Verlag. 1979. VIII + 415p.