
Procedia of Engineering and Medical Sciences

26
https://procedia.online/ ISSN-2795-563X

Procedia of Engineering and Medical Sciences

Rakhimov Bakhtiyar Saidovich
1

Sobirova Sabokhat Kabulovna
2

Xusainov Shixnazar Madaminovich
3

Saidov Atabek Bakhtiyarovich
4

1
Head of the Department of Biophysics and information

technologies of Urgench branch of Tashkent Medical Academy,

Uzbekistan
2
Senior teacher of the Department of Biophysics and information

technologies of Urgench branch of Tashkent Medical Academy,

Uzbekistan
3
master 2 – course Urgench branch of Tashkent University of

Information Technologies named after Muhammad al

Khwarizmi, Uzbekistan
4
student 4 – course Urgench branch of Tashkent University of

Information Technologies named after Muhammad al

Khwarizmi, Uzbekistan

 New Models and Analysis Solve Medical Problems with Database Systems

 Annotation. Computer vision as a scientific discipline refers to the theories and technologies for

creating medical database systems that receive information from an image. Despite the fact that this

discipline is quite young, its results have penetrated almost all areas of life. Computer vision is closely

related to other practical areas like image processing, the input of which is two-dimensional images

obtained from a camera or artificially created. This form of image transformation is aimed at noise

suppression, filtering, color correction and image analysis, which allows you to directly obtain specific

information from the processed image. This information may include searching for objects, feature points,

segments, etc. All scalar processors operate in SIMD mode, while executing a block of threads in the G80,

the number of threads in a block is 32, called a warp. At the same time, in 4 clock cycles of the

multiprocessor, all beam streams are processed at once when performing operations with floating point,

with double precision - in 32 clock cycles, and transcendental functions - in 16 clock cycles. The number of

threads per multiprocessor is limited. To synchronize the threads, special instructions have been developed

that interrupt the execution of a bundle and start the next bundles in the queue until all bundles are

interrupted. Due to this mechanism, threshold synchronization is achieved with a minimum amount of

time. It is usually designed for communication between scalar processors via shared memory.

Key words: Grafic processors, algorithm, memory, hardware, software.

Introduction

PRAM (Parallel Random Access Machine) is an idealized abstract model of a synchronous shared memory

machine. This model was proposed in 1978 by S. Fortune and J. Wyllie [5] to estimate the performance (in

particular, the execution time) of parallel algorithms.

PRAM assumes the presence of an infinite number of processors, each of which can synchronously execute

various instructions on data in a shared memory, thus operating in MIMD mode [2]. If all processors

execute the same instructions, then this model can be considered an abstract SIMD machine. The PRAM

Proceedings of the International Congress on "Medical
Improvement and Natural Sciences" | 2022

Procedia of Engineering and Medical Sciences

27
https://procedia.online/ ISSN-2795-563X

model does not consider the problems of synchronization and communication of processors, and the main

instructions that processors can execute are the same as those of a conventional RAM (Random Access

Machine, a machine with random access to memory) [9]: arithmetic, logical operations, and memory access

operations. The latter cause a number of problems in parallel algorithms, therefore, within the framework

of the PRAM model, several different strategies have been developed to resolve memory access conflicts:

1) Concurrent Read, Concurrent Write (CRCW, simultaneous reading with simultaneous writing) - at any

time, data from the shared memory can be read and written in parallel by any processors;

2) Concurrent Read, Exclusive Write (CREW, simultaneous reading with an exclusive write) - at any

time, data from the shared memory can be read in parallel by any processors, but writing can be done

by only one processor;

3) Exclusive Read, Concurrent Write (CRCW, exclusive reading during simultaneous writing) - at any

time, data from the shared memory can be read by only one processor, and written in parallel by several

processors;

4) Exclusive Read, Exclusive Write (CRCW, exclusive read with exclusive write) - at any time, data from

the shared memory can be read and written by only one processor.

In PRAM, all control is performed using a single clock counter, and it is considered that all processors

execute instructions synchronously with this counter. In one cycle, three actions are performed at once:

reading data from the shared memory, performing an operation on the read data, and writing the results to

the shared memory. This condition is met even if all processors perform different operations or a different

number of memory accesses. That is why this model is idealized, because in real computers, these actions

vary in time. Nevertheless, this model is suitable for creating, analyzing and comparing algorithms, taking

into account the following assumptions [6]:

1) the number of processors in the machine is not limited;

2) each processor has equal access to any cell of the shared memory;

3) the size of the shared memory is not limited;

4) there is no competition for resources;

5) Processors operate in MIMD mode.

To simulate algorithms on a PRAM machine, emulators were created that reflect the main features of this

model [9].

To model and analyze algorithms on PRAM, it is necessary to represent their calculations in the form of an

acyclic directed graph “operations-operands” [1]:

),(RVG 

V where is the set of graph vertices representing the operations of the algorithm;

R is the set of graph arcs.

It is obvious that the number of different variations of calculation schemes for the constructed graphs will

have different possibilities for parallelization. Operations between which there is no path in the constructed

graph can be performed in parallel. Thus, the next step to parallelize the algorithm is to build a schedule for

the required number of processors:

  VitPipH ii  :,,)(

Objective Statement

Obviously, not all computer vision algorithms can be parallelized on GPUs. Any artificial computer vision

system, regardless of its area of application, should include the following typical stages of work:

1) image acquisition (photo or video filming);

2) preliminary processing;

Procedia of Engineering and Medical Sciences

28
https://procedia.online/ ISSN-2795-563X

3) highlighting characteristic features;

4) detection or segmentation;

5) High-level processing.

Almost all stages can be realized with the help of parallel computer vision algorithms executed on modern

parallel computing devices. Some of them can use data parallelism, which is advisable to use on the

general-purpose GPUs discussed above.

Materials and Methods

Unlike the G80, the multiprocessor in the R600 does not have a local shared memory, but consists of a

certain number of vector processors. It is the number of vector processors that determines the size of a

bunch of processes (wavefront - in ATI's terminology). In the best configuration, one multiprocessor

included 16 vector ones. Each vector processor consists of four scalar processors, one transcendental

function processor, a branch block and general purpose registers. Thus, at one time, due to the use of

VLIW, five operations on 32-bit numbers can be simultaneously performed on one vector processor. But

most general-purpose parallel computing emphasizes scalar computing, so this parallelization feature is

rarely used. Different VLIW commands can be executed on all multiprocessors, but on one multiprocessor

for all vector processors, the instruction must be the same, but with different address registers. Access to

video memory is performed for all threads simultaneously within 300 to 600 multiprocessor cycles [6], but

due to the use of VLIW and scheduling of thread bundles, the delay in accessing the global memory of the

video adapter is effectively hidden.

The memory controller reports to the task manager. Processed data and constant memory are stored in

video memory and, if necessary, cached in caches of the second and first levels, while they are common to

all multiprocessors.

The next architecture of R700 chips appeared in June 2008 [6, 8]. The main differences from the R600

were as follows:

1) multiprocessors now have local shared memory (16 Kb);

2) a separate first-level cache for data appeared for each multiprocessor;

3) the cache of constants and instructions is separated from the data cache;

4) the second-level data cache is divided into several memory controllers;

5) The number of multiprocessors increased to 10 in the best configuration.

Thus, in this architecture, it became possible to cache data in the local memory of the multiprocessor,

allowing exchange operations between the processors of the multiprocessor to be carried out faster than

through video memory.

The architecture of the latest generation R800, presented in September 2009 [2,7], is almost identical to the

R700. The changes mainly affected the quantitative characteristics:

1) the size of the shared memory of the multiprocessor has been increased to 32 KB;

2) Increased the number of multiprocessors to 20 in the best configuration.

ATI Stream SDK and the OpenCL language, which uses its own heterogeneous model [1, 8], are used to

program ATI GPUs. Unlike CUDA, this model is applicable not only to data parallelism, but also to task

parallelism, and takes into account the number of CPU cores. OpenCL is based on a C-like language for

writing program cores.

Results and Discussion

The models of parallel programming discussed above are intended primarily for the programmer to have an

idea about the main structural elements of graphic processors, which include memory and computing

elements, and the relationships between them. In addition, both CUDA and OpenCL have some algorithm

abstraction that assumes that input and output data are represented as an array of elements, each of which is

Procedia of Engineering and Medical Sciences

29
https://procedia.online/ ISSN-2795-563X

processed independently of each other, due to which data parallelism is achieved. We highlight the main

disadvantages of these models:

1) there is no mathematical description of the abstract model of the GPU, so it is impossible to estimate

the running time of a particular algorithm on different GPUs;

2) significant parameters of parallel algorithms have not been identified, thanks to which it is possible to

analyze and compare these algorithms in terms of execution time on a GPU with a certain

configuration;

3) despite the fact that the models are heterogeneous (i.e. they take into account not only graphics

processors, but also central ones), they do not have methods for making a decision about the target

computing system;

4) for these models, general principles for optimizing parallel computing have not been developed (in [2,

6], optimization methods are given for a specific platform, but not for a model);

5) There is no general methodology for the development of parallel algorithms.

These shortcomings are associated with a number of factors that one has to face when developing a parallel

computing model [9, 10], the main of which is the lack of a formal parallel computing model using a

central and graphic processor. A formal model is provided by all abstract models of parallel computing

with their abstract machines, but it is quite difficult to find a formal model suitable for analyzing parallel

computing on GPUs due to the diversity of their architectures. Nevertheless, there are attempts to formalize

some aspects of parallel computing on GPUs.

Conclusions

Computer vision as a scientific discipline refers to theories and technologies for creating artificial systems

that receive information from an image. Despite the fact that this discipline is quite young, its results have

penetrated almost all spheres of life. Computer vision is closely related to other practical areas [3]:

1) image processing, the input data of which are two-dimensional images obtained from a camera or

artificially created. This form of image transformation is aimed at noise suppression, filtering, color

correction, etc.;

2) image analysis, which allows obtaining certain information directly from the processed image. Such

information may include the search for objects, characteristic points, segments, etc.;

3) vision of the robot, designed to orient the robot in space by modeling the environment from images

received from video cameras;

4) machine vision, which is used in production and industry for automatic product quality control, product

defect detection, measurement control, etc. Typical applied problems of computer vision are [3,4]:

1) Detection of objects in the image. Despite the fact that a person can easily select specific objects from

an image, this problem has not yet been completely solved for artificial systems. Most of the solutions

are of a particular nature, based on the specific properties of the object being searched for, and,

accordingly, are not suitable for searching for objects that do not have them. There are several universal

algorithms for object detection (neural networks, Viola-Jones, etc. [8]), which are slow and have a

serious detection error with slight deviations of objects from the desired ones specified during training,

but, nevertheless, their simplified versions widely used for small images. Therefore, an important task

while maintaining the accuracy of detection is to speed up calculations [5];

2) Recognition of objects in the image [1]. This task is a continuation of the previous one, the result of

which is an array of areas where objects can be found. The purpose of this task is to determine the

presence in these areas of a specific class of objects that already has more specific features and,

accordingly, can be better classified;

3) Identification of objects, the result of which can be a conclusion about the correspondence of the

recognized object to a specific (unique) instance (for example, a fingerprint, the face of a specific

person, a car number, etc.). Separately, it is worth highlighting from this group character recognition

systems, the accuracy of identification of which affects the quality of the recognized material;

Procedia of Engineering and Medical Sciences

30
https://procedia.online/ ISSN-2795-563X

4) Search for images in the database by content, based on the recognition of a particular class of objects.

In this case, the performance of the artificial system plays a significant role in speeding up the search

for images; therefore, the possibility of parallelizing the algorithms of this group of tasks is considered

very important;

5) Reconstruction of a three-dimensional scene from a certain set of input images (video stream) allows

you to determine the positions of objects and a source in three-dimensional space, used to move robots,

create panoramic images, etc.;

6) Tracking of moving objects in a video stream provides for direct determination of the position of an

object in space by changing its position on two-dimensional images while maintaining the

characteristic features of the object. This task is very resource-intensive and must be performed in real

time, so the main emphasis when creating algorithms for this area is on their performance;

7) Image processing. This task area is designed to transform the pixels of two-dimensional images and is a

priority for other computer vision tasks. Almost all transformations are filtering transformations, i.e. a

set of operations is performed on each pixel of the image, depending on other pixels that are in close

proximity to the desired one using special matrices.

References

1. Rakhimov BS, Mekhmanov MS, Bekchanov BG. Parallel algorithms for the creation of medical

database. J Phys Conf Ser. 2021;1889(2):022090. doi:10.1088/1742-6596/1889/2/022090

2. Rakhimov BS, Rakhimova FB, Sobirova SK. Modeling database management systems in medicine. J

Phys Conf Ser. 2021;1889(2):022028. doi:10.1088/1742-6596/1889/2/022028

3. Rakhimov B, Ismoilov O. Management systems for modeling medical database. In: ; 2022:060031.

doi:10.1063/5.0089711

4. Rakhimov BS, Khalikova GT, Allaberganov OR, Saidov AB. Overview of graphic processor

architectures in data base problems. In: ; 2022:020041. doi:10.1063/5.0092848

5. P. P. Kudryashov Algorithms for detecting a human face for solving applied problems of image

analysis and processing: author. dis. Cand. tech. Sciences: 05.13.01. - M, 2007.

6. Tanenbaum E. Modern operating systems. 2nd ed. - SPb .: Peter, 2002 .-- 1040 p .: ill.

7. Brodtkorb A.R., Dyken C., Hagen T.R., Hjelmervik J.M., Storaasli O.O. State-of-the-art in

heterogeneous computing / A.R. Brodtkorb, C. Dyken, T.R. Hagen, J.M. Hjelmervik, O.O. Storaasli //

Scientific Programming, T. 18, 2010. - S. 1-33.

8. Zaynidinov H., Mallayev O., Kuchkarov M. Parallel algorithm for modeling temperature fields using

the splines method 2021 IEEE International IOT, Electronics and Mechatronics Conference,

IEMTRONICS 2021 - Proceedings, 2021, 9422645

9. Zaynidinov H., Makhmudjanov S., Rajabov F., Singh D. IoT-Enabled Mobile Device for

Electrogastrography Signal Processing Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2021, 12616 LNCS, стр.

346–356

10. Zaynidinov H.N., Yusupov I., Juraev J.U., Singh D. Digital Processing of Blood Image by Applying

Two-Dimensional Haar Wavelets Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in bioinformatics), 2021, 12615 LNCS, стр. 83–94

https://www.scopus.com/authid/detail.uri?authorId=57205200100
https://www.scopus.com/authid/detail.uri?authorId=57223995475
https://www.scopus.com/authid/detail.uri?authorId=57222020547
https://www.scopus.com/authid/detail.uri?authorId=57205200100
https://www.scopus.com/authid/detail.uri?authorId=57221644568
https://www.scopus.com/authid/detail.uri?authorId=57222327142
https://www.scopus.com/authid/detail.uri?authorId=35230651200
https://www.scopus.com/authid/detail.uri?authorId=57205200100
https://www.scopus.com/authid/detail.uri?authorId=57217587870
https://www.scopus.com/authid/detail.uri?authorId=57217531575
https://www.scopus.com/authid/detail.uri?authorId=35230651200

